$\mathbf{P d}-\mathbf{P}(t-\mathrm{Bu})_{3}$-Catalyzed Consecutive

 Cross-Coupling of \boldsymbol{p}-Phenylenedizinc Compoundwith Two Different Electrophiles Leading to
Unsymmetrically 1,4-Disubstituted Benzenes

Takahiro Kawamoto, Shogo Ejiri, Kana Kobayashi, Shunsuke Odo, Yasushi Nishihara, and Kentaro Takagi*

Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700-8530, Japan
takagi@cc.okayama-u.ac.jp
Received September 26, 2007

$\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ was found to be a chemoselective catalyst for the reaction of p-phenylenedizinc compound with equimolar amounts of carbon electrophiles to afford the single crosscoupling products in good yields, effectively suppressing the formation of double cross-coupling products. The subsequent additions of other electrophiles to the resulting solutions caused the second cross-coupling of the incipient products to take place, achieving a novel and efficient one-pot synthesis of unsymmetrically 1,4-disubstituted benzenes. The origin of the observed high chemoselectivity was speculated.

As a synthetic method of disubstituted benzenes $\mathbf{1}$, the crosscoupling reaction between phenylene-supplying reagents $\mathbf{2}$, synthetic equivalents of $\mathbf{3 a}-\mathbf{c}$, and their electronically matching counterparts is useful, since the products are entirely free from contamination by any regioisomers (Figure 1). ${ }^{1}$ In the reaction, the consecutive treatment of 2 with two kinds of coupling

[^0]

FIGURE 1. Synthesis of p-disubstituted benzenes.
partners provides 1 with an unsymmetrical structure, in which the greater the difference in reactivity between the two leaving groups X_{1} and X_{2}, the higher the degree of selectivity in the transformation of 2 to the desired product. Thus, in such reactions, the synthetic equivalents of $\mathbf{3 b}$ (possessing $X_{1}=I$ or Br and $\mathrm{X}_{2}=\mathrm{B}, \mathrm{Zn}, \mathrm{Mg}$, or Sn^{2}) or 3 c (possessing $\mathrm{X}_{1}=\mathrm{I}$ and $\mathrm{X}_{2}=\mathrm{Br}$ or OTf^{3}) have been generally employed, whereas those of 3a have been little utilized, presumably because of the difficulty in preparing 2 with two different kinds of electrofuges. ${ }^{4}$ Hereupon, it is noted that, even if the electrofuges are the same, i.e., $X_{1}=X_{2}$, the chemoselective coupling on one site is essentially possible; the reactivity of the singly coupled product $\mathbf{4}$ is no longer the same as that of the starting material. Thus far, the transformations using the synthetic equivalents of 3a have been carried out using B or Sn derivatives along with the catalysis by Pd, thus affording unsymmetrical terphenyls in the low yields of $13-33 \%$ by the consecutive treatment with two kinds of aryl iodides. ${ }^{1 \mathrm{ff}, \mathrm{h}, \mathrm{n}}$ We envisaged that the efficiency of the transformations might be improved by making use of the more positively charged X_{1}, causing a greater difference between the reactivities of 2 and $\mathbf{4}$. As a metal, we were interested in Zn (EN: B = 2.0; $\mathrm{Sn}=1.8 ; \mathrm{Zn}=1.7$). We previously reported that the reaction between iodobenzenes and zinc powder smoothly takes place in $N, N, N^{\prime}, N^{\prime}$-tetramethylurea (TMU) to afford the corresponding arylzinc compounds in good

[^1]
SCHEME 1. Synthesis of Symmetrically 1,4-Disubstituted Benzenes

yields. ${ }^{5}$ In this paper, we intended to achieve the efficient synthesis of $\mathbf{1}$ with unsymmetrical structures starting from the synthetic equivalent of $\mathbf{3 a}$ using the readily available Zn derivatives of $2, \mathrm{X}_{1}=\mathrm{X}_{2}=\mathrm{ZnI}$, through the investigation into the effect of the phosphorus ligand affecting the discriminating ability of the Pd catalyst between the reactivities of 2 and 4.

First, to see the utility of the zinc compound, 1,4-bis(iodozinc)benzene 5, in the Negishi reaction, the cross-coupling with various aryl iodides $\mathbf{6 a}-\mathbf{c}$ or aroyl chlorides $7 \mathbf{a}$ (2.4 equiv) was carried out in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} .^{6}$ The obtained results, summarized in Scheme 1, show that the desired products $\mathbf{8}-\mathbf{1 1}$, symmetrically 1,4 -disubstututed benzenes, were obtained in good yields under mild conditions, proving that the compound is superior to the corresponding $\mathrm{B}^{1 \mathrm{~g}-\mathrm{n}}$ or Sn derivatives ${ }^{1 \mathrm{n}-\mathrm{r}}$ in the related Pd-catalyzed reactions, with respect to the employed conditions and/or yields. ${ }^{1 h, i, n-p}$

The reaction of $\mathbf{5}$ with 4-iodo(trifluoromethyl)benzene $\mathbf{6 b}$ (1.0 equiv) was examined to determine if the single cross-coupling product was selectively obtained upon decreasing the amount of carbon electrophiles to one-half of the amount used in Scheme 1. After the stirring of the solution for 1 h at room temperature, the resulting solution, treated with I_{2} to determine the yield of 4^{\prime}-(trifluoromethyl)biphenyl-4-ylzinc iodide $\mathbf{1 2}$ as its derivative, 4-iodo- 4^{\prime}-(trifluoromethyl)biphenyl 13, showed the presence of 12 in 69% yield along with 10% of the double coupling product 9 (entry 1 in Table 1). Although the yield of $\mathbf{1 2}$ might be satisfactory for practical use, a higher one is desirable, due to the difficulty in purifying the arylzinc compounds.

The effect of the ligands was then investigated using the palladium catalysts, generated in situ from $\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\right)_{2}$ and various phosphorus ligands possessing individual electronic and sterically demanding properties. The obtained results are summarized in Table 1 together with the electronic parameter χ^{7} and steric parameter θ^{8} of the ligands.

[^2]TABLE 1. Effect of Ligand on Pd-Catalyzed Reaction of 5 or 14^{a}

12, $9 \quad \mathrm{R}=p-\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ 15, $17 \quad \mathrm{R}=m-\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$								
entry	L		yield ${ }^{\text {b }} / \%$				property of L	
			12	15	9	17	χ^{c}	$\theta^{d} / \mathrm{deg}$
$1{ }^{e}$	$\mathrm{Ph}_{3} \mathrm{P}$	P_{1}	69		10		13.25	145
2	$\left(p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	P_{2}	64		13		10.5	145
3	$\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	P_{3}	60		12		11.5	145
4	$\mathrm{Ph}_{3} \mathrm{P}$		66		10		13.25	145
5	$\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	P_{4}	70		9		16.8	145
6	$\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	P_{5}	72		8		20.5	145
7	TTMOP	P_{6}	49		15		-8	184
8	$\left(o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	P_{7}	59		14		10.65	178
9	$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{P}$	P_{8}	63		11		34.8	184
10	$\mathrm{Bu}_{3} \mathrm{P}$	P_{9}	54		14		5.25	136
11	$t-\mathrm{Bu}_{3} \mathrm{P}$	P_{10}	78		7		0	182
12^{f}	$t-\mathrm{Bu}_{3} \mathrm{P}$		78		5			
$13{ }^{8}$	$t-\mathrm{Bu}_{3} \mathrm{P}$		80		6			
14^{h}	$t-\mathrm{Bu}_{3} \mathrm{P}$		80		8			
15	$\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$			46		18	11.5	145
16	$\mathrm{Ph}_{3} \mathrm{P}$			49		15	13.25	145
17	$\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$			59		14	20.5	145
18	$t-\mathrm{Bu}_{3} \mathrm{P}$			73		8	0	182

${ }^{a} 5$ or $\mathbf{1 4}(0.5 \mathrm{mmol}), \mathbf{6 b}(0.5 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(0.005 \mathrm{mmol}), \mathrm{L}(0.02$ $\mathrm{mmol})$, TMU $(0.3 \mathrm{~mL})$, and THF (2.5 mL) were used in every run. ${ }^{b}$ GLC yield. Yield of $\mathbf{1 2}$ or $\mathbf{1 5}$ was calculated from 4- or 3-iodo-4'-trifluoromethylbiphenyl $\mathbf{1 3}$ or $\mathbf{1 6}$, respectively, obtained by the I_{2} treatment of the reaction solutions. ${ }^{c} \chi=$ electronic parameter. ${ }^{d} \theta=$ steric parameter, cone angle. ${ }^{e} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was used in place of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2} .{ }^{f}$ Bis (dibenzylideneacetone)palladium was used in place of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2} .{ }^{g}$ Bis $\left[\left(\eta^{3}\right.\right.$-allyl)-$\mu$-chloropalladium] $(0.0025 \mathrm{mmol})$ was used in place of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$. ${ }^{h} \operatorname{Bis}\left[\left(\eta^{3}\right.\right.$-allyl $)-\mu$-chloropalladium $](0.000025 \mathrm{mmol})$ and $\mathrm{P}(t-\mathrm{Bu})_{3}(0.0002$ mmol) were used.

As for a series of triarylphosphines with $\theta=145^{\circ}$, the yield of $\mathbf{1 2}$ seemingly became higher along with the concomitant decreases in the yield of $\mathbf{9}$, when the electron-donating property was low (entries 1-6). Eventually, based on the utility of tris-\{4-(trifluoromethyl)phenyl\}phosphine, a 72\% yield of $\mathbf{1 2}$ and the selectivity between $\mathbf{1 2}$ and 9 of 9.0 were attained. As expected, the steric bulkiness of the ligand did not necessarily increase the yield of $\mathbf{1 2}$ (entries 7-9), in contrast to its beneficial effect in our previous study with the o-phenylenedizinc compound, in which the Pd catalyst containing the bulky tris(2methylphenyl)phosphine or tris(2,4,6-trimethoxyphenyl)phosphine (TTMOP) afforded the highest selectivity between the single/double coupling products. ${ }^{9}$ Among the examined trialkylphosphines, $\mathrm{P}(\mathrm{Bu})_{3}, \theta=136^{\circ}$, gave a rather poorer result than the ordinary triarylphosphines (entry 10), presumably due to the stronger electron-donating ability, whereas $\mathrm{P}(t-\mathrm{Bu})_{3}$ attained the highest yield of $\mathbf{1 2}, \mathbf{7 8 \%}$, and the selectivity between $\mathbf{1 2}$ and 9 of 11.1 (entry 11). It is noted that $\mathrm{P}(t-\mathrm{Bu})_{3}$ belongs to the phosphines that are not only the most electron-donating but also the most bulky (Scheme 2). Therefore, the observed selectivity exerted by $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ is of interest. An equally effective catalyst was also available from $\mathrm{P}(t-\mathrm{Bu})_{3}$ and other precursors such as bis(dibenzylideneacetone)palladium or bis[$\left(\eta^{3}\right.$-allyl)-μ-chloropalladium] (entries 12 and 13), and the amount of the

[^3]TABLE 2. $\mathbf{P t}-\mathbf{P}(\mathbf{t}-\mathrm{Bu})_{3}$-Catalyzed Consecutive Reaction of 5 with Two Different Electrophiles ${ }^{a}$

entry	$\mathrm{R}^{1}-\mathrm{X}$		Y-X		product	$\underset{(\%)}{\text { yield }^{b}}$
1	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6b	I-I		13	(78)
2	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}-\mathrm{Cl}$	7b	I-I		18	(81)
3	$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{I}$	6d	I-I		19	(70)
4	$p-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6 e	I-I		20	(68)
5	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6b	$p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}-\mathrm{I}$	6 c	21	76
6	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6b	$p-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}-\mathrm{I}$	6a	22	78
7	$p-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6 e	$p-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}-\mathrm{I}$	6	23	56
8	$o-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6 g	$p-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}-\mathrm{I}$	6 f	24	61
9	$o-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6 g	$o-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}-\mathrm{I}$	6h	25	55
10	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	61	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\mathrm{Br}$	6j	26	59
11	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6b	(Z) $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CCH}=\mathrm{CH}-\mathrm{I}$	6k	27	68
12	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}$	6b	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}-\mathrm{Cl}$	7b	28	78

${ }^{a}$ Molar ratio: $5 / \mathrm{R}-\mathrm{X} / \mathrm{Y}-\mathrm{X} / \mathrm{Pd}-t-\mathrm{Bu}_{3} \mathrm{P}=1: 1: 1.2: 0.01$. In entries $1-4, \mathrm{I}_{2}$ was used in excess. ${ }^{b}$ Isolated yield. Yields in parentheses determined by GLC.

SCHEME 2. Relationship between $\log \{($ yield of 12)/(yield of 9$)\}$ and σ-Donicity of Ligand, χ

catalyst was reduced to $0.01 \mathrm{~mol} \%$ without any significant drop in the efficiency in the catalysis (entry 14).

To see if the efficiency of $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ is ubiquitously observed in phenylene systems, the reactions of the m phenylenedizinc compound 14^{6} with $\mathbf{6 b}$ were examined. The results show that, in comparison with a series of $\mathrm{Pd}-$ triarylphosphines, $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ exhibited a far more effective catalysis, affording a 73% yield of the desired product, 4^{\prime} -(trifluoromethyl)biphenyl-3-ylzinc iodide 15, detected as 3-iodo-4^{\prime}-(trifluoromethyl)bipenyl 16 via I_{2} treatment, and the selectivity between 15 and the double coupling product, $4,4^{\prime \prime}$ -bis(trifluoromethyl)-1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl 17, of 9.1 (entries 1518). Interestingly, with respect to each ligand, the yield of a single coupling product and the selectivity were lower than the respective ones with 5 (entries $3,4,6$, and 11).

Encouraged by the established validity of $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ in the reaction between $\mathbf{5}$ and $\mathbf{6 b}$, the utility of other electrophiles $\mathbf{6 d}$, $\mathbf{6 e}, 7 \mathbf{b}$ in the catalytic reaction was examined. The obtained results, summarized in Table 2, show that, similar to $\mathbf{6 b}$, the aroyl chloride was subject to the efficient catalysis by $\mathrm{Pd}-\mathrm{P}(t-$ $\mathrm{Bu})_{3}$, yielding the desired product 18 , derived from the single coupling product through the second reaction with I_{2}, in a high yield (entry 2), and iodobenzenes, even without an electronwithdrawing substituent, also afforded the desired products 19, 20 in good yields (entries 3, 4).

Fortunately, after the reactions of $\mathbf{5}$ with an equimolar amount of electrophiles such as $\mathbf{6 b}, \mathbf{6 e}, \mathbf{6 g}$, or $\mathbf{6 i}$ were completed, $\mathrm{Pd}-$
$\mathrm{P}(t-\mathrm{Bu})_{3}$ retained the catalytic activity. Thus, the subsequent additions of other carbon electrophiles such as $\mathbf{6 a}, \mathbf{6 c}, \mathbf{6 f}, \mathbf{6 h}$, $\mathbf{6 j}, \mathbf{6 k}$, or $\mathbf{7 b}$ (1.2 equiv) to the resulting solutions readily caused their catalytic cross-coupling with the incipient products to take place. The results summarized in Table 2 show that a wide variety of unsymmetrically 1,4 -disubstituted benzenes, containing 4- $\mathrm{CF}_{3^{-}}, 4-\mathrm{NO}_{2^{-}}, 4-\mathrm{C}_{2} \mathrm{H}_{5}-$, or $2-\mathrm{C}_{2} \mathrm{H}_{5}$-substituted phenyl group as the first introduced substituent and $4-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCO}-, 4-\mathrm{CH}_{3} \mathrm{CO}-$, $4-\mathrm{CH}_{3} \mathrm{O}$-, or $2-\mathrm{CH}_{3} \mathrm{CO}$-substituted phenyl, alkenyl, benzyl, or aroyl groups as the second introduced substituent, was obtained in good yield (entries 5-12). Thus, based on the utility of 5 and the specific catalysis by $\operatorname{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$, the novel and efficient one-pot synthesis of unsymmetrically 1,4 -disubstituted benzenes from the p-phenylenedimetallic compound was achieved.

Finally, it might be worthy to consider the reason for the high chemoslectivity achieved by $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$, because the results are concerned with the transmetallation reaction involved in the catalytic cycle (vide infra), of which there is limited mechanistic information. ${ }^{10}$ In Scheme 3, prepared by application of the general catalytic cycle of the Negishi reaction to the present one, the double coupling product \mathbf{C}, like $\mathbf{9}$, is formed from the single coupling product \mathbf{B}, like 12, through cycle II, wherein exists a competition for the oxidative adduct \mathbf{A} between \mathbf{B} and 5, the latter of which belongs to cycle I yielding B. During the competitive transmetallation, among the various examined $\mathrm{Pd}-\mathrm{L}$ (Table 1), $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ significantly discriminated the difference in the reactivity between $\mathbf{5}$ and \mathbf{B}, resulting in producing \mathbf{B} with the highest yield. ${ }^{11}$ Each of the ligands L conferred an individual catalytic efficiency on \mathbf{A}, depending on its electronic property and/or steric bulkiness; however, $\mathrm{P}(t-$ $\mathrm{Bu})_{3}$ seems to deviate from the standard effect. That is, as shown

[^4]
SCHEME 3. Catalytic Cycle

in Scheme 2, for both $\mathrm{G}_{1} \theta \leq 145^{\circ}$ and $\mathrm{G}_{2} \theta>145^{\circ}$, forming A of $\operatorname{ArPdXL} 2_{2}$ and of ArPdXL, respectively, ${ }^{12}$ the selectivity tended to increase as the electron-donating ability of L decreased, although the degrees of the increase in G_{1} and of G_{2} were not the same, with the exception of $\mathrm{P}(t-\mathrm{Bu})_{3}$. As the special effect by $\mathrm{P}(t-\mathrm{Bu})_{3}$, the agostic interaction in $\operatorname{ArPdI}\left(\mathrm{P}(t-\mathrm{Bu})_{3}\right)$ brings about the noted strengthening of the bond between Pd and I. ${ }^{13,14}$ Such a strong Pd-I probably made the replacement of I with the weaker nucleophile \mathbf{B} much more difficult, which might be the origin of the high chemoselectivity ${ }^{15}$ (Scheme 4). As for G_{1} or G_{2}, A containing the weakly electron-donating L should possess a strong corresponding bond, obeying the trans influence rule. This fact might support the hypothesis.

In conclusion, $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ catalyst achieved the chemoselective cross-couplings of p-phenylenedizinc compounds with

[^5]
SCHEME 4. Discrimination of Reactivity between 5 and B

> The easiness of the deligation of I^{-}is detrimentally affected by the "agostic interaction" between $\mathrm{P}(t-\mathrm{Bu})_{3}$ and Pd center.
an equimolar amount of aryl or aroyl electrophiles to afford the single coupling products in high yields, ${ }^{17}$ which allowed the novel and efficient access to unsymmetrically 1,4-disubstituted benzenes through the one-pot procedure.

Experimental Section

General Procedure for the Palladium-Catalyzed Consecutive Cross-Couplng of Phenylenedizinc Compound 5 with Two Kinds of Carbon Electrophiles. Preparation of 4-Methoxy-4"-trifluoromethyl-1,1': $\mathbf{4}^{\prime}$, $\mathbf{1}^{\prime \prime}$-terphenyl 21. To $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ (1.9 $\mathrm{mg}, 0.005 \mathrm{mmol})$ was added THF $(0.1 \mathrm{~mL})$ and 0.059 mL of a hexane solution of $\mathrm{P}(t-\mathrm{Bu})_{3}(0.020 \mathrm{mmol})$, then the mixture was stirred for 5 min at room temperature. To the mixture was next added a 2.8 mL of THF/TMU solution of $5(0.50 \mathrm{mmol})$ and 4-iodobenzotrifluoride $\mathbf{6 b}(0.090 \mathrm{~mL}, 0.50 \mathrm{mmol})$; the mixture was stirred for 1 h at room temperature. To the resulting mixture, p-iodoanisole $\mathbf{6 c}(131 \mathrm{mg}, 0.60 \mathrm{mmol})$ was added and stirred for 3 h at room temperature. After the treatment of the resulting mixture with aqueous HCl , the CHCl_{3} extract was thin layer chromatographed on silica gel affording 125 mg of 21 (76%): mp 196$197{ }^{\circ} \mathrm{C}$; IR (KBr) $1259 \mathrm{~cm}^{-1}, 1336 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.67-7.73(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{2} \mathrm{H}_{2}-$ $\left.\mathrm{Cl}_{4}\right) \delta 55.3,114.3,124.2(\mathrm{q}, J=272.1 \mathrm{~Hz}), 125.6(\mathrm{q}, J=3.9 \mathrm{~Hz})$, $127.1,127.5,128.0,129.1(\mathrm{q}, J=32.5 \mathrm{~Hz}), 132.7,137.8,140.5$, 144.1, 159.3; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}: ~ \mathrm{C}, 73.16$; $\mathrm{H}, 4.60$. Found: C, 73.10; H, 5.00.

Supporting Information Available: General method, relationship between $\log ([\mathbf{B}] /[\mathbf{C}])$ and $\log k / k^{\prime}$, the bond distance between Pd and I in ArPdI complexes, compound characterization data. This material is available free of charge via Internet at http://pubs.acs.org.

JO702103R

[^6]
[^0]: (1) See for example: $\mathrm{X}_{1}, \mathrm{X}_{2}=\mathrm{Cl}, \mathrm{Cl}$: (a) Mao, L. S.; Sakurai, H.; Hirao, T. Synthesis 2004, 2535-2539. $\mathrm{X}_{1}, \mathrm{X}_{2}=\mathrm{Br}, \mathrm{Br}$: (b) Wu, C.-J. J.; Xue, C.; Kuo, Y.-M.; Luo, F.-T. Tetrahedron 2005, 61, 4735-4741. (c) Dong, C.-G.; Hu, Q.-S. J. Am. Chem. Soc. 2005, 127, 10006-10007. (d) Uozumi, Y.; Kikuchi, M. Synlett 2005, 1775-1778. X ${ }_{1}$, X 2 I, I: (e) Sinclair, D. J.; Sherburn, M. S. J. Org. Chem. 2005, 70, 3730-3733. X 1 , $\mathrm{X}_{2}=\mathrm{B}, \mathrm{B}:$ (f) Todd, M. H.; Balasubramanian, S.; Abell, C. Tetrahedron Lett. 1997, 38, 6781-6784. (g) Bähr, A.; Felber, B.; Schneider, K.; Diederich, F. Helv. Chim. Acta 2000, 83, 1346-1376. (h) Iovine, P. M.; Kellett, M. A.; Redmore, N. P.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 8717-8727. (i) Chaumeil, H.; Le Drian, C.; Defoin, A. Synthesis 2002, 757-760. (j) Thiemann, T.; Umeno, K.; Wang, J.; Tabuchi, Y.; Arima, K.; Watanabe, M.; Tanaka, Y.; Gorohmaru, H.; Mataka, S. J. Chem. Soc., Perkin Trans. 1 2002, 2090-2110. (k) Perret-Aebi, L.-E.; von Zelewsky, A. Synlett 2002, 773-774. (1) Kalai, T.; Balog, M.; Jeko, J.; Hubbell, W. L.; Hideg, K. Synthesis 2002, 2365-2372. (m) Mandolesi, S. D.; Vaillard, S. E.; Podesta, J. C.; Rossi, R. A. Organometallics 2002, 21, 4886-4888. (n) Havelkova, M.; Dvorak, D.; Hocek, M. Tetrahedron 2002, 58, 7431-7435. $\mathrm{X}_{1}, \mathrm{X}_{2}=$ Sn, Sn: (o) Siesel, D. A.; Staley, S. W. J. Org. Chem. 1993, 58 , 7870-7875. (p) Bao, Z.; Chan, W. K.; Yu, L. J. Am. Chem. Soc. 1995, 117, 12426-12435. (q) Corsico, E. F.; Rossi, R. A. Synlett 2000, 230232. (r) Corsico, E. F.; Rossi, R. A. J. Org. Chem. 2002, 67, 3311-3316. Reference 1 m .

[^1]: (2) $X_{1}, X_{2}=B$, Br: (a) Shimada, S.; Yamazaki, O.; Tanaka, T.; Rao, M. L. N.; Suzuki, Y.; Tanaka, M. Angew. Chem., Int. Ed. 2003, 42, 18451848. (b) Simoni, D.; Giannini, G.; Baraldi, P. G.; Romagnoli, R.; Roberti, M.; Rondanin, R.; Baruchello, R.; Grisolia, G.; Rossi, M.; Mirizzi, D.; Invidiata, F. P.; Grimaudo, S.; Tolomeo, M. Tetrahedron Lett. 2003, 44, 3005-3008. $\mathrm{X}_{1}, \mathrm{X}_{2}=\mathrm{Zn}, \mathrm{Br}$ or I: (c) Amatore, C.; Jutand, A.; Negri, S.; Fauvarque, J.-F. J. Organomet. Chem. 1990, 390, 389-398. (d) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 6040-6044. X_{1}, $\mathrm{X}_{2}=\mathrm{Li}$, Br: (e) Banwell, M. G.; Flynn, B. L.; Hamel, E.; Hockless, D. C. R. Chem. Commun. 1997, 207-208. X, $\mathrm{X}_{2}=$ Mg, Br or I: (f) Yang, X.; Rotter, T.; Piazza, C.; Knochel, P Org. Lett. 2003, 5, 1229-1231. (g) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333-3336. $\mathrm{X}_{1}, \mathrm{X}_{2}=\mathrm{Bi}$, Br: (h) Rasmussen, L. K.; Begtrup, M.; Ruhland, T. J. Org. Chem. 2006, 71, 1230-1232.
 (3) See for example: $\mathrm{X}_{1}, \mathrm{X}_{2}=\mathrm{I}, \mathrm{Br}$ or $\mathrm{Cl}:$ (a) Pena, M. A.; Perez, I.; Sestelo, J. P.; Sarandeses, L. A. Chem. Commun. 2002, 2246-2247. (b) Duan, X.-F.; Li, X.-H.; Li, F.-Y.; Huang, C.-H. Synthesis 2004, 26142616. References 1 p and 2 b . $\mathrm{X}_{1}, \mathrm{X}_{2}=$ OTf or I, Br or Cl (c) Ohe, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201-2208. (d) Rottländer, M.; Palmer, N.; Knochel, P. Synlett 1996, 573-575. (e) Fürstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2003, 42, 308-311. (f) Cho, C.-H.; Kim, I.-S.; Park, K. Tetrahedron 2004, 60, 4589-4599. (g) Cho, C.-H.; Park, H.; Park, M.-A.; Ryoo, T.-Y.; Lee, Y.-S.; Park, K. Eur. J. Org. Chem. 2005, 31773181.
 (4) $X_{1}, X_{2}=S i, S n:$ (a) Nitschke, J. R.; Zürcher, S.; Tilley, T. D. J. Am. Chem. Soc. 2000, 122, 10345-10352. $\mathrm{X}_{1}, \mathrm{X}_{2}=\mathrm{Mg}$, B prepared successively: (b) Christophersen, C.; Begtrup, M.; Ebdrup, S.; Petersen, H.; Vedso, P. J. Org. Chem. 2003, 68, 9513-9516. X ${ }_{1}$, $\mathrm{X}_{2}=\mathrm{Mn}$, Mn prepared successively: (c) Rieke, R. D.; Kim, S.-H.; Wu, X. J. Org. Chem. 1997, $62,6921-6927 . X_{1}, X_{2}=\mathrm{Mg}, \mathrm{Mg}$ prepared successively: ref 2f.

[^2]: (5) (a) Takagi, K. Chem. Lett. 1993, 469-472. (b) Takagi, K.; Shimoishi, Y.; Sasaki, K. Chem. Lett. 1994, 2055-2088. (c) Okano, M.; Amano, M.; Takagi, K. Tetrahedron Lett. 1998, 39, 3001-3004. (d) Ogawa, Y.; Saiga, A.; Mori, M.; Shibata, T.; Takagi, K. J. Org. Chem. 2000, 65, 1031-1036. (e) Ikegami, R.; Koresawa, A.; Shibata, T.; Takagi, K. J. Org. Chem. 2003, 68, 2195-2199.
 (6) To the best of our knowledge, the direct synthesis of p - or m-phenylenedizinc compound $\mathbf{5}$ or $\mathbf{1 4}$ from the corresponding dihalobenzene and zinc powder has not been reported. For the direct synthesis of $\mathbf{5}$ using activated zinc, see: (a) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445-1453. For the direct synthesis of $\mathbf{5}$ or $\mathbf{1 4}$ using zinc powder in the presence of Co catalyst, see: (b) Kazmierski, I.; Gosmini, C.; Paris, J.-M.; Perichon, J. Tetrahedron Lett. 2003, 44, 6417-6420. (c) Fillon, H.; Gosmini, C.; Perichon, J. J. Am. Chem. Soc. 2003, 125, 38673870. (d) Fillon, H.; Gosmini, C.; Nedelec, J.-Y.; Perichon, J. Tetrahedron Lett. 2001, 42, 3843-3846. For the application of $\mathbf{5}$ to the Negishi reaction, the synthesis of polymer from 5 was only reported: (e) Mellah, M.; Labbe, E.; Nedelec, J.-Y.; Perichon, J. New J. Chem. 2002, 26, 207-212.
 (7) (a) Bartik, T.; Himmler, T.; Schulte, H. G.; Seevogel, K. J. Organomet. Chem. 1984, 272, 29-41. (b) Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1990, 9, 1758-1766.

[^3]: (8) Tolman, C. A. Chem. Rev. 1977, 77, 313-348.
 (9) Saiga, A.; Hossain, K. M.; Takagi, K. Tetrahedron Lett. 2000, 41, 4629-4632.

[^4]: (10) For a general catalytic cycle of Pd-catalyzed cross-coupling including the Negishi reaction, see for example: (a) Tamao, K.; Miyaura, N. In CrossCoupling Reactions; Miyaura, N., Ed.; Springler: Berlin, 2002; pp 4-7. For a transmetallation of arylpalladium complexes, see for example: (b) Suzaki, Y.; Yagyu, T.; Osakada, K. J. Organomet. Chem. 2007, 692, 326342. (c) Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704-4734. (d) Casares, J. A.; Espinet, P.; Fuentes, B.; Salas, G. J. Am. Chem. Soc. 2007, 129, 3508-3509.
 (11) (a) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393-2401. (b) Amatore, C.; Jutand, A. In Handbook of Organopalladium Chemistry; Negishi, E., Ed.; John Wiley \& Sons: New York 2002; pp 943-965. See the Supporting Information (SI) for the details.

[^5]: (12) (a) Paul, F.; Patt, J.; Hartwig, J. F. Organometallics 1995, 14, 30303039. (b) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 1159811599. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550-9561. (d) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020-4028. (e) Casares, J. A.; Espinet, P.; Salas, G. Chem. Eur. J. 2002, 8, 4843-4853.
 (13) Stambuli, J. P.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9346-9347.
 (14) The bond distance between Pd and I in the complex, 2.613A, is one of the shortest among the various ArPdI complexes containing the phosphorus ligand. See the SI, for the details.
 (15) We measured the ${ }^{19} \mathrm{~F}$ NMR of p-fluorophenylzinc compound to determine the field/inductive parameter $c \sigma$ of p-ZnI group. ${ }^{16}$ The observed $c \sigma$ constant for $p-\mathrm{ZnI},-0.32$, was smaller than the values reported for $p-\mathrm{C}_{6} \mathrm{H}_{5}, 0.01$, and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, 0.41$, which means that $\mathbf{5}$ possesses a stronger nucleophilicity than the single coupling product \mathbf{B}. A similar run with the m derivative showed that $m-\mathrm{ZnI}, c \sigma$ constant -0.29 , also possesses a stronger electron-donating ability than $m-\mathrm{C}_{6} \mathrm{H}_{5}, 0.06$, or $m-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, 0.32$.

[^6]: (16) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.
 (17) $\mathrm{Pd}-\mathrm{P}(t-\mathrm{Bu})_{3}$ affords the double coupling products selectively in the reaction of dihalobenzenes with equimolar amounts of arylboronic acids: Reference 1e. See also: Yokoyama, A.; Suzuki, H.; Kubota, Y.; Ohuchi, K.; Higashimura, H.; Yokozawa, T. J. Am. Chem. Soc. 2007, 129, 72367237.

